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TOPIC II: COLLECTIONS

PAUL L. BAILEY

1. Collections of Sets

We do not disallow the possibility that a set may be an element of another set.
In fact, this idea is very useful. For example, we may talk about the set of lines in
a plane, even though each line is a set of points in the plane. The set of lines is a
set of subsets of the points in the plane. It is common to call sets whose elements
are subsets of a given set a collection of subsets.

Let X be a set and let C be a collection of subsets of X. Then the intersection
and union of the sets in the collection are defined by

• ∩C = {x ∈ X | x ∈ C for all C ∈ C};
• ∪C = {x ∈ X | x ∈ C for some C ∈ C}.

Thus ∩C is the intersection of all the sets in C and ∪C is their union.

Example 1. Let A = {n ∈ N | n < 25}, O = {n ∈ A | n is odd},
P = {n ∈ A | n is prime}, and S = {n ∈ A | n is a square}. Let C = {O,P, S}.
Then

• ∩C = ∅, because no square is a prime;
• ∪C = {2, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 19, 21, 23}.

�

Example 2. Let A = {n ∈ N | n < 1000}. For each d ∈ N, define

Dd = {n ∈ A | n = dm for some m ∈ N}.
Let D = {Dp | p is prime and p ≤ 7}. Find ∩D.

Solution. The set Dd is the set of positive multiples of d which are less then 1000.
The set D is the collection of all Dp such that p is a prime which is less than 7.
Thus D = {D2, D3, D5, D7}. Then ∩D, being the intersection of these sets, is the
set of natural numbers less than 1000 which are multiples of 2, 3, 5, and 7. Such
a number must be a multiple of 210. Also, any multiple of 210 which is less than
1000 is in all four sets. Thus ∩D = {210, 420, 630, 840}. �
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2. Collections of Functions

We may also consider sets whose members are functions.

Example 3. Let X be a set and let Sym(X) be the set of all bijective functions
on X. Then Sym(X) is a collection of functions. �

If A and B are sets, we may speak of the set of all functions from A to B. We
shall denote this set by F(A,B):

F(A,B) = {f : A→ B}.

Example 4. Let A = {1, 2} and B = {5, 6, 7}. Then F(A,B) contains the following
functions:

• 1 7→ 5 and 2 7→ 5;
• 1 7→ 5 and 2 7→ 6;
• 1 7→ 5 and 2 7→ 7;
• 1 7→ 6 and 2 7→ 5;
• 1 7→ 6 and 2 7→ 6;
• 1 7→ 6 and 2 7→ 7;
• 1 7→ 7 and 2 7→ 5;
• 1 7→ 7 and 2 7→ 6;
• 1 7→ 7 and 2 7→ 7.

Also F(B,A) contains the following functions:

• 5 7→ 1, 6 7→ 1, 7 7→ 1;
• 5 7→ 1, 6 7→ 1, 7 7→ 2;
• 5 7→ 1, 6 7→ 2, 7 7→ 1;
• 5 7→ 1, 6 7→ 2, 7 7→ 2;
• 5 7→ 2, 6 7→ 1, 7 7→ 1;
• 5 7→ 2, 6 7→ 1, 7 7→ 2;
• 5 7→ 2, 6 7→ 2, 7 7→ 1;
• 5 7→ 2, 6 7→ 2, 7 7→ 2.

�

Example 5. Let F = F(R,R) denote the set of all real valued functions of a real
variable:

F = {f : R→ R}.
Let D denote the set of all differentiable functions in F:

D = {f : R→ R | f is differentiable}.
Note that D ⊂ F.

The differentiation operator is a function

d

dx
: D→ F.

Not every function is the derivative of a function, so d
dx is not surjective. Since two

functions which differ by a constant have the same derivative, d
dx is not injective.

�



3

3. Power Sets

Let X be a set. The power set of X is denoted P(X) and is defined to be the
set of all subsets of X:

P(X) = {A | A ⊂ X}.
Here are a few examples:

• X = ∅⇒ P(X) = {∅};
• X = {0} ⇒ P(X) = {∅, {0}};
• X = {0, 1} ⇒ P(X) = {∅, {0}, {1}, X};
• X = {0, 1, 2} ⇒ P(X) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, X}.

and so forth. Here are some properties:

• Y ⊂ X ⇒ P(Y ) ⊂ P(X);
• ∩P(X) = ∅;
• ∪P(X) = X.

Let X be any set and let T = {0, 1}. A given function f : X → T may be viewed
as a subset of X by thinking of f as saying, for a given element, whether or not it
is in the subset. The element 1 is thought of as “ON” or “TRUE” and the element
0 is thought of as “OFF” or “FALSE”. Specifically, given f : X → T , define A to
the preimage of 1:

A = {a ∈ A | f(a) = 1};
that is, A = f−1[{1}].

On the other hand, given a subset of X, we can construct a function

χA : X → T

by defining

χA(x) =

{
0 if x /∈ A;

1 if x ∈ a.
This is just the characteristic function of the subset A.

Thus the power set of X corresponds to the set of functions from X into T in
a natural way. Another way of stating this is that there exists a bijective function
between P(X) and F(X,T ).
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4. Partitions

Let X be a set and let C ⊂ P(X). We say that C covers X if ∪C = X. We say
that the sets in C are collectively disjoint if ∩C = ∅. If for every two distinct sets
C,D ∈ C, we have C ∩D = ∅, we say that the members of C are mutually disjoint
(or pairwise disjoint). If the sets of a collection are mutually disjoint, then they are
collectively disjoint, but the converse of this is not necessarily true.

Example 6. Let X = {1, 2, 3} and let C = {{1, 2}, {1, 3}, {2, 3}}. Then

∪C = ({1, 2} ∪ {2, 3}) ∪ {2, 3} = {1, 2, 3} ∪ {2, 3} = {1, 2, 3} = X,

so the sets in C cover X. Also

∩C = ({1, 2} ∩ {1, 3}) ∩ {2, 3} = {1} ∩ {2, 3} = ∅,
so the sets in C are collectively disjoint. They are not, however, mutually disjoint.

Let D = {{1, 2}, {3}}. Then D covers X with mutually disjoint sets. �

A partition of X is a collection of mutually disjoint nonempty subsets of X which
covers X. The members of a partition are called blocks.

Let C ⊂ P(X). Then C is a partition of X if

(P0) C ∈ C⇒ C 6= ∅
(P1) C1, C2 ∈ C⇒ C1 ∩ C2 = ∅ ∨ C1 = C2

(P2) ∪C = X

Suppose that C is a partition of X. If x ∈ X, then there is a unique A ∈ C such
that x ∈ A; x is certainly in one of them, because X is covered by the members of
C; x is in no more than one, for otherwise the ones containing x would overlap and
not be disjoint. Put another way, every x ∈ X is in exactly one of the members of
C.

Example 7. Let x be a point in a space and let S(x, r) be a sphere of radius r
with center x. Then the collection

S = {S(x, r) | r ∈ R and r ≥ 0}
is a partition of space; the blocks of this partition are spheres centered at x. This
is true since each point in space has a unique distance from the point x. �

Example 8. Let C be the set of cards in a deck and let S be the set of suits.
That is, C contains 52 elements and S = {♠,♥,♦,♣}. There is a natural function
f : C → S which sends a given card to its suit. The preimage of a suit under f is
the set of cards in that suit, for example:

f−1[♠] = {2♠, 3♠, 4♠, 5♠, 6♠, 7♠, 8♠, 9♠, 10♠, J♠,Q♠,K♠,A♠}.
Let S = {f−1[s] | s ∈ S}. Then S is a collection of subsets of C, each subset

consisting of all the cards in a given suit. It is clear that S covers C and that the
sets within S are mutually disjoint. Thus S is a partition of C. This is a general
phenomenon: functions induce partitions on their domains. We will explore this in
depth later.

One more thing to notice here. There are as many elements in S as there are in
S. Indeed, in some philosophical way, S is essentially the same as the set S. �
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5. Partitions Given by Functions

Let X and Y be sets and let f : X → Y be surjective. Let y ∈ Y . The fiber over
y is f−1(y), the preimage of y.

The function f induces a partition of the set X is a natural way, by taking the
collection of fibers. Let

X = {A ⊂ X | A = f−1(y) for some y ∈ Y }.
Then X is a partition of X.

For each x ∈ X, let x = f−1(f(x)). Clearly, x is the fiber over f(x), and x ∈ x.
That is, x is the set of elements in X which are mapped to f(x) by f . As x ranges
over all of X, we see that the blocks of the partition X are the subsets of X of the
form x. That is,

X = {A ∈ P(X) | A = x for some x ∈ X}.
The canonical function induced by f is

β : X → X given by β(x) = x.

We use the greek letter β to remind us that this is the BAR function.
We attempt to define a function f : X → Y by setting f(x) = f(x). The problem

with this is that the definition appears to depend on which element in x we pick. If
x′ is another element in x, then x′ is in the fiber over f(x), so f(x′) = f(x). Thus
our definition does not depend on the particular element in x we pick; we say that
the function f is “well-defined”.

Proposition 1. Let X and Y be sets and let f : X → Y be surjective. Let

X = {A ⊂ X | A = f−1(y) for some y ∈ Y }.
Let

β : X → X given by β(x) = x.

Set
f : X → Y given by f(x) = f(x).

Then f is well-defined, and
f ◦ β = f.

This result is the Isomorphism Theorem in the Category of Sets. When we see
the analogous theorem in other categories, it will be quite useful. The situation is
represented by the following “commutative diagram”.

X Y

X

β

f

f

Saying that the diagram commutes means that an element “flows” through the
arrows from one set to another in a manner which does not depend on the route.
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6. Exercises

Exercise 1. Design a collection C of subsets of N which has all of the following
properties:

(1) C covers N (∪C = N);
(2) distinct sets in C are disjoint (C,D ∈ C and C 6= D ⇒ C ∩D = ∅);
(3) each set C ∈ C contains infinitely many elements;
(4) C contains exactly 7 subsets of N.

Recall that we have given the name “partition” to collections of sets satisfying the
first two properties.

Exercise 2. Let R be the set of real numbers.
(a) Find a collection of subsets of R which covers R but whose members are not
collectively disjoint.
(b) Find a collection of subsets of R which covers R and whose members are
collectively disjoint but not mutually disjoint.
(c) Find three different partitions of R, each containing a different number of blocks.

Exercise 3. Let X = {1, 2, 3, 4, 5} and let Y = {1, 2, 3}. Find a five different
partitions of the set F(X,Y ), each of which contains three blocks.

Exercise 4. Let X be a set and let A,B ⊂ X.
(a) Show that P(A ∩B) = P(A) ∩ P(B).
(b) Show that P(A) ∪ P(B) ⊂ P(A ∪B).
(c) Find an example such that P(A) ∪ P(B) 6= P(A ∪B).

Exercise 5. Let X be a set. Find an injective function φ : X → P(X).

Exercise 6. Let X be as set. Show that there does not exist a surjective function
φ : X → P(X).
(Hint: select an arbitrary function φ : X → P(X), and construct a set in P(X)
which is not in the image of φ.)

Exercise 7. Let X be a set. Define a function φ : P(X)→ P(X) by A 7→ X r A.
Show that φ is bijective.

Exercise 8. Let X be a set and let T = {0, 1}. Show that there is a correspondence
between the sets P(X) and F(X,T ).

Exercise 9. Let X be a set containing n elements. Count the size of the set P(X).

Exercise 10. Let A and B be sets containing m and n elements respectively.
Count the size of the set F(A,B).
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